Experiments with Supervised Fuzzy LVQ

نویسندگان

  • Christian Thiel
  • Britta Sonntag
  • Friedhelm Schwenker
چکیده

Prototype based classifiers so far can only work with hard labels on the training data. In order to allow for soft labels as input label and answer, we enhanced the original LVQ algorithm. The key idea is adapting the prototypes depending on the similarity of their fuzzy labels to the ones of training samples. In experiments, the performance of the fuzzy LVQ was compared against the original approach. Of special interest was the behaviour of the two approaches, once noise was added to the training labels, and here a clear advantage of fuzzy versus hard training labels could be shown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fuzzy-soft learning vector quantization for control chart pattern recognition

This paper presents a supervised competitive learning network approach, called a fuzzy-soft learning vector quantization, for control chart pattern recognition. Unnatural patterns in control charts mean that there are some unnatural causes for variations in statistical process control (SPC). Hence, control chart pattern recognition becomes more important in SPC. In order to detect e€ ectively t...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Self-organizing fuzzy control of multi-variable systems using learning vector quantization network

Using learning vector quantization (LVQ) network to construct a self-organizing fuzzy controller (SOFC) for multivariable nonlinear composite systems is developed in this paper. The LVQ network is used to provide information about the better locations of the IF-part membership functions through un-supervised learning. The generated fuzzy rule base is applied to the SOFC and updated by a self-le...

متن کامل

Metric learning for incorporating privileged information in prototype-based models

Prototype-based classification models, and particularly Learning Vector Quantization (LVQ) frameworks with adaptive metrics, are powerful supervised classification techniques with good generalization behaviour. This thesis proposes three advanced learning methodologies, in the context of LVQ, aiming at better classification performance under various classification settings. The first contributi...

متن کامل

Extending Learning Vector Quantization for Classifying Data with Categorical Values

Learning vector quantization (LVQ) is a supervised neural network method applicable in non-linear separation problems and widely used for data classification. Existing LVQ algorithms are mostly focused on numerical data. This paper presents a batch type LVQ algorithm used for classifying data with categorical values. The batch learning rules make possible to construct the learning methodology f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008